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1 Introduction
1.1 PROBLEM STATEMENT

With the constant evolution of technology, so much of what we use in our day-to-day lives relies heavily on
the power grid. Cyber attacks on distribution companies are debilitating and are now more common due to
the increased use of IoT devices and the inadequate security of power grid systems. If we want to feel as
though our power is protected, our security measures must continue to advance with the constantly
developing technology of cybercriminals. ADSICS is a surveillance program that detects cyber-attacks using
machine learning analysis.

1.2 DESIGN EVOLUTION

In 491, our plan was initially intended to work by controlling and monitoring the sensor network built into
the provided testbed. It would then analyze information collected by the sensors and assign alert labels to
events completely autonomously. The end goal was to describe a detailed visual output including temporal
and spatial correlation, tracking alert information, and performing machine learning analysis quickly and
efficiently using the desired platforms (Elastic Stack). We then began to focus on building our machine
learning model to compare with the outputs from Elastic to determine whether or not this relatively “new”
platform could be relied upon solely as a valid solution to detect and analyze various cyberattacks.

This shift created a split in our project with each branch having a different focus. The first was similar to our
initial project design as it was to use the tools within Elastic Stack (Elasticsearch, Kibana, Logstash, etc.) to
provide visuals detailing different attacks detected on the testbed. These visualizations show a spectrum of
information including the type, length, severity, and of attack. Below is a diagram depicting how the Agents
send attack information from the IADS Master to the ELK Cloud for analysis.

1 Design Overview - ElasticStack
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The second branch was to create our Machine Learning (ML) model by training it with provided datasets
and deploying it on the VM network to detect the anomalies. This portion of the project is used to fully
understand the benefits and restraints of relying solely on a platform like Elastic to do anomaly detection.
One of the advantages of this approach was that this ML model can be modified to accept the Operational
Technology (OT) dataset which aligns with our original goal of the project. Below is a diagram depicting the
flow of the ML modeling process. From IADS Master, sensor data is collected and CICFlowMeter will
continue to sniff the network traffic.  Then, the data is converted into CSV format so that it can be given to
the existing ML model. The ML model used is already trained with the multiple attack types and is being
deployed on the testbed. From the result of the trained model, the anomalies are detected and classified.

2 Design Overview - Local

1.3 REQUIREMENTS

Functional Requirements:
● Use machine learning to detect network anomalies
● Verify incoming alerts and detect false positives
● Display alerts for easy human understanding
● Present temporal and spatial details for each alert
● Users should be able to add or remove data visualizations on the dashboard
● Alerts should be distinguishable from each other and labled

Non-Functional Requirements:
● Alerts should be presented intuitively
● Alerts should be color coded by severity
● The system should be able to handle a large volume of alerts
● The system should be reliable and consistent with analysis
● System should have an accuracy of >95% for detecting each alert
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Engineering Constraints:
● One branch of the project must use the anomaly detection must use ElasticStack tools (specifically

Elasticsearch, Kibana, and Logstash)

1.4 ENGINEERING STANDARDS

3 Engineering Standards

1.5 SECURITY CONCERNS AND COUNTERMEASURES

Cybersecurity concerns are the driving force behind the creation of this project and as such, we use a series
of simulated attacks by replaying network traffic to model and test our data. As we were mainly developing
the functionalities of the system, we did not set up specific security rules on the testbed out of concern that
might affect the simulated attacks. Also, a firewall would filter our attacks and be counterintuitive to our
project design. However, we can add rules and firewalls to restrict the adverse connection to our anomaly
detection system in the future. Additionally, we must use a web application to access the Virtual Machine
(VM) testbed and Elastic, so there is a common network security concern such as hijacking or spying on the
connection. The communication is protected by HTTPS protocol and both VM testbed and Elastic requires
authentication to use the system.
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2 Implementation Details

2.1 ELASTIC STACK

The ELK stack, or Elastic Stack, is the amalgamation of three open-source projects into one. Elasticsearch,
Logstash(Beats), and Kibana are the layers that make the stack whole. Elasticsearch is the search and
analytics engine, Logstash is the ingestion pipeline, and Kibana is the visualizer of all the data coming in.
There is also a security aspect built-in where all ingested data is checked off by rules and alerts the system if
anyone is trying to intrude. We have used every component offered in Elastic to run our anomaly detection
system.

We did not use Elasticsearch for its effective searching capability. However, it is heavily integrated into the
Elastic environment’s core and it allows us to use the general document storage for all our data and the alert
engine that supports our anomaly detection engine. Logstash and Beats are both on the data ingestion layer
and do the same thing. They are used as a way to ingest live network traffic and have it be stored on the
Elastic cloud system. To ingest data a user can either build their pipeline to the system for ingestion or they
can use the variety of integrations prebuilt on Elastic. We went ahead with the integration path and created
our fleet of Elastic agents. The integrations we have used in our projects were Network Packet Capture,
Zeek, and Auditbeat.

4 Elastic Fleet

We call each integration an agent by its data type. Once the Elastic agents can get tangible data coming in,
they can also analyze them and enable creation dashboards or other visualizations to use. Then we can
monitor the live data by built-in log metric. One downside to the Elastic path instead of the VM testbed ML
model is the loss of OT protocols. We cannot show live OT data into Elastic because there is no way to
create a pipeline for OT protocols. We can however see we are at least getting the Modbus data by changing
one of the ports network packet capture picks up. We cannot visualize anything as the current protocol it is
attached to doesn’t recognize the Modbus port and Modbus is not supported yet. We have even spoken to
the company, Elastic team, and there is no integration to house OT protocols, so we switched to IT network
traffic to test our anomaly detection system.
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5 Elastic Discover Metric Live Data Dashboard

The Kibana layer has multiple ways to show data. There is a discovery page where users can see the entire
packet of live-fed data. The dashboards which come with pre-designed visual showcases what exactly that
piece of data is showing. Users can also create their dashboard to their liking and we used it as our base for
the front end page to show the user all of the anomalies our system has caught. Kibana also has a machine
learning feature. We have used that feature extensively to show live intrusion detection and classification
using machine learning jobs. We used the machine learning jobs for high network counts to show the
massive spike in the network which can detect DoS and Brute Force attacks. We used the anomaly detection
jobs for unusual rare processes and ports to detect XSS attacks. To classify the anomalies in the CSVs we
used the data frame analytics option in Kibana. We created classification jobs for all datasets with 4 decision
trees inside and 30 important features. We then compared our results from the Elastic and VM ML model to
see the difference.

6 Elastic Machine Learning Anomaly/Analytic Jobs

One of the many tools we used besides the Elastic agents and their fleet was to use TCPreplay. We used
TCPreplay as a means to replay live traffic saved in a PCAP file exactly as it was sent when the traffic was
captured. TCPreplay is then used by the command line which defines which network interface it will run on,
and the PCAP file with the network flow information to emulate the network traffic. We used Wireshark, a
tool that visualizes end-to-end packet communication, to see if our simulated network flow is detected on
Elasticsearch. At first, while replaying the network traffic according to the PCAP file, TCPreplay frequently
failed to send the traffic and even stopped during execution. Later, it was found that the speed of replayed
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network traffic logs was too fast for Elasticsearch to accept, resulting in skipping most of the packets which
made it undetectable. Also, the messages being sent by TCPreplay were too long for the network interface’s
Maximum Transmission Unit (MTU). Although we changed the MTU of the network interface to its
maximum, 9000, some of the packets still failed to be sent since they were longer.

To resolve the problem we used TCPreplay’s sub-option ‘TCPreplay-edit’ and ‘MTU trunc’ to truncate the
longer packets to the MTU size. Despite the truncation, the number of affected packets was less than 1% so
there was no adverse effect on the testing accuracy. Alongside TCPreplay, we also utilized Editcap. It is used
to extract the attack by setting start and end times from the entire PCAP file. Instead of waiting eight hours
to get the testing result, we could start the attack that lasts only twenty minutes to run which increased our
efficiency of testing. The ability of editing PCAP files led to making different scenario PCAP files for
different testing purposes.

2.2 DATASETS

The main datasets we used for different types of attacks such as DoS, Brute Force, and  XSS from
https://www.unb.ca/cic/datasets/ids-2017.html. We got our datasets from the 2017 intrusion detection
evaluation data sets from the University of New Brunswick. We used the 2017 dataset because of the variety
of attacks and the length of an entire working hour with network traffic. Out of five days we used two
different working days, Wednesday for DoS attacks and Thursday for Website attacks. Each dataset comes
with the CSV and PCAP files of each day. We used the PCAP files to replay the network flow along with
attacks inside it and used CSV files to classify attacks with our local VM ML model.

Prebuilt CSV datasets were used for training the local ML model and for testing before live traffic tests. It
has 78 features and “Label” is already provided for classification. Also it was used as a reference for making
CSV files from PCAP files using CICFlowMeter. From the PCAP file, FIN packet used as an indicator of the
end of the flow, CICFlowMeter created the CSV datasets. The CSV datasets are each compiled of a flow.
These data flows consist of 78 features ranging from Destination Port to Flow ID. By analyzing the PCAP
files, a “Label” column was created and imputed with the various “attack” types associated with each data
flow.
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Wednesday_Workingday dataset is the largest dataset with thirteen gigabytes and has four classified DoS
attacks: DoS slowloris, DoS Slowhttptest, DoS Hulk, DoS GoldenEye as well as a heartbleed port 444 attack
that occurs later in the afternoon.

Wednesday_Workingday

DoS / DDoS

Network Traffic from 9:00 A.M. to 5:00 P.M.

OS IP Local IP

Attacker Kali 205.174.165.73

Victim DDoS WebServer Ubuntu 205.174.165.68 192.168.10.50

Victim Heartbleed Ubuntu12 205.174.165.66 192.168.10.51

Type of Attack Start End

DoS Slowloris 9:47 10:10

DoS Slowhttptest 10:14 10:35

DoS Hulk 10:43 11:00

DoS GoldenEye 11:10 11:23

Heartbleed Port 444 15:12 15:32

7 Wednesday Dataset Summary
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The other dataset we used is the Thursday_Workday_Morning dataset. We used the morning subset that
includes Web Attacks: Brute Force, XSS, SQL Injection.

Thursday_Workingday_Morning

Web Attack

Network Traffic from 9:00 A.M. to 12:00 P.M.

OS IP Local IP

Attacker Kali 205.174.165.73

Victim WebServer Ubuntu 205.174.165.68 192.168.10.50

Type of Attack Start End

Brute Force 9:20 10:00

XSS 10:15 10:35

SQL Injection 10:40 10:42

8 Thursday Dataset Summary

For Modbus, we used Modbus dataset that has Modbus query flood, Ping flood, and tcpSYN flood attacks.
https://github.com/tjcruz-dei/ICS_PCAPS

Modbus_Combined_Train

Three different DDoS. Modbus query flood, Ping flood, tcpSYN flood

Network Traffic lasts 6,12,12 hours

IP

Attacker for MQF 172.27.224.50 172.27.224.70 172.27.224.80

Victim 172.27.224.250

Type of Attack Description

Modbus Query Flood 30 minute duration

Ping Flood 30 minute duration

TCP SYN Flood 30 minute duration

9 Modbus Dataset Summary

10

https://github.com/tjcruz-dei/ICS_PCAPS


2.3 LOCAL MACHINE LEARNING TECHNIQUES

The datasets mentioned above were quite imbalanced in terms of the amount of each “attack” alert to the
majority category, “Benign.” For example, in the Wednesday_Workinghours dataset, there was initially
44042 BENIGN alerts (0.0 in Figure 10), 5796 DoS Slowloris (1.0 in Figure 10), 5499 DoS Slowhttptest (2.0 in
Figure 10), 231073 DoS Hulk (3.0 in Figure 10), and 10293 DoS GoldenEye (4.0 in Figure 10). This created an
issue as the Benign alerts had a high accuracy but the more scarce ones like DoS Slowloris were very hard to
detect accurately.

To balance out the number of each of these attacks, we used Synthetic Minority Oversampling Technique
(SMOTE) on the minority alerts (alerts 1.0, 2.0, and 4.0) and random undersampling on the majority alert
(alert 0.0 and 3.0).We decided to set the undersampling amount to ½ the largest alert count (ie. the
BENIGN count). Then, we set the oversampling amount to ½ of the undersampling amount. Afterwards, the
count of each attack became as follows; 231073 BENIGN alerts (0.0 in Figure 10), 115536 DoS Slowloris (1.0 in
Figure 10), 115536 DoS Slowhttptest (2.0 in Figure 10), 231073 DoS Hulk (3.0 in Figure 10), and 115536 DoS
GoldenEye (4.0 in Figure 10). The results of using SMOTE can be seen below in Figure 10.

10 SMOTE results

As mentioned earlier, there were 78 features in the dataset and we felt that the model would become more
precise if we used feature selection to narrow down the important features for our data. We decided that the
best way to do this would be to use forward model selection with cross validation to select the features and
narrowed them down from 78  to 30. Unfortunately, this did not work as the features outputted fit only the
dataset we trained them on (Thursday Morning). To expand, because Thursday’s attacks were XSS, SQL, and
Brute Force, all of the features extracted did not fit perfectly with the Wednesday’s attacks which were
mostly DoS types. This issue was fixed, however, in the final model as the code used included feature
selection so regardless of the dataset, the model would use the 30 most relevant features for that dataset.

All of this was implemented using scikit-learn and the machine learning algorithms we used were Decision
Tree and Random Forest. For each dataset, models were trained and saved to a .joblib file. Then, they were
employed by loading the file and obtaining the predictions. The output is in the format of a confusion
matrix, and accuracy table which shows results individually for each possible label value including the
accuracy.
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3 Testing and Results

3.1 TESTING

The code for this project is simple in structure, but involves complex machine learning models. Therefore,
traditional code testing is not needed for this project, as there are no branches or individual functions to
consider. However, it is important to verify that our machine learning models provide consistent and
accurate results. Even more important is the verification of Elasticsearch’s results, as that software does not
expose its internal process to its clients. This project considers Elasticserach’s machine learning model as a
black box, so it is important and useful to test its output.

The tests were conducted by creating several small test datasets that were used as input to our trained
models. The tests were: anomalous data followed by benign data, anomalous data preceded and followed by
benign data, and benign data followed by anomalous data. The idea behind these tests was that the results
should be easily predicted and verified by humans. Therefore, the machine learning model’s output could be
evaluated without having to rely on more machine learning. These tests were also conducted multiple times
to check for consistency. Each type of anomaly was tested in this manner. More details regarding these tests
can be found in section 3.2.

3.2 ELASTICSEARCH RESULTS

The below graphs illustrate the severity of anomalies over time in the dataset, as well as the overall accuracy
for each anomaly type.

11 Elasticsearch Anomaly Detection Dashboard

The figure 11 here shows our front end page of our anomaly detection system. Here the user can choose what
time range they want to analyze, in our case we chose a week of data. Then show all of the anomalies scores
at the top left by each job. Going down it showcases the exact contents inside each job. To the left those jobs
showcase the rare processes going on with hosts and that is what we used in finding XSS anomalies. The
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graph to the right showcases the high count of events happening in the network for us to pinpoint DDoS
attacks and Brute Force attacks.

12a Elasticsearch High Count Anomaly Detection

12b Elasticsearch High Count Anomaly Detection

Figure 12a and b showcase the high counts jobs. We focused primarily on DDoS attack verification and we
used the highscount_network jobs in order to visualize when the network has activity that rises way more
than the normal. Here we have the full 8.5 hr pcap file from the Wednesday data simulated like it really did
back when they ran the tests. The attacks can be classified into the slowLoris at the first red dot, slow http
to the second spike, hulk the massive spike, then finally finish off the red dot with the goldeneye attack.
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13 Elasticsearch High Count/Rare Anomaly Detection

Figure 13 showcases all of the anomaly detection jobs we have used for our analysis on the elastic jobs and
their anomaly scores to determine when we run our attacks it can pick them up. We used the highcounts
attack to determine the bruteforce and ddos attacks. Then we used the rare_user activity and processes to
determine the scoring for XSS attacks.

14a Elasticsearch Machine Learning Results Wednesday
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14b Elasticsearch Machine Learning Results Wednesday

We used the machine learning algorithm option, but going the data frame analytic route instead of
intrusion detection machine learning like the figures 11-13. With the CSV data set we can now classify the
attacks using decision trees, just like the local implementation and then compare the two in the future to
see how they run side by side. Figures 14a and 14b show how the the dataset for the wednesday attacks come
up to be fairly accurate after running. We have nearly a perfect 99% accuracy and recall for all attacks. One
thing that the elastic search version has that the local implementation doesnt is the feature selection
importance graphs which is Figure 14b, there the user can see what exact feature the algorithm is using to
base its test off from and is useful in messing with the training of the model to make it more accurate.
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15a Elasticsearch Machine Learning Results Thursday

15b Elasticsearch Machine Learning Results Thursday

Figures 15a and 15b showcase the Thursday_MorningWorkday data set in which we have attacks classified for
benign, XSS, Brute Force, and SQL injection attacks. This dataset is the most skewed than the Wednesday
dataset. The reason why is because the data set only comprises just a few nodes of data for the attack. The
only attack with more than a couple hundred was the brute force attack while the Wednesday one has
multiple thousand for each attack. It was able to pick up the benign classification of normal behavior then
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pick up the attacks for XSS but the amount for both brute force and sql was too small so there was nothing
to show. The feature selection was also way smaller than the Wednesday datta set with not many important
values to show for the classification.

16a Elasticsearch Machine Learning Results Details
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16b Elasticsearch Machine Learning Results Details

16c Elasticsearch Machine Learning Results Details

These are of the many tests we have done to do more training on the Elastic System to see if we are correctly
getting the right classification of information. We have done attacks at a time range starting at the very top,
very bottom, and some tests where they are located in the middle of the network flow. All of the attacks
came through with high accuracy and recall to 99% for the Wednesday dataset. The only ones with trouble
are the figures 16b and 16c. Those are the ones done for the Thursday_Morning dataset. They have a higher
skeew due to the fact that the datasets have smaller datasets and that we haven’t run that many attacks for
better classification.
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17a Elasticsearch Machine Learning Results Modbus
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17b Elasticsearch Machine Learning Results Modbus

17c Elasticsearch Machine Learning Results Modbus

Figures 17a-17c showcase the Elastic machine learning outcomes from running the Modbus datasets attack.
Here we show mitm and Modbus query flood attacks being classified and reaching a high 100% accuracy
level nailing all of the tests. Figure 17c shows the exact important features that made the correct
classification and we used those to better fit our models accuracy.
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3.3 LOCAL MODEL RESULTS

This confusion matrix represents the local model’s success rate on each type of anomaly.

18 Local Machine Learning Results Wednesday

The Wednesday dataset contains benign data (0) and three types of DoS attacks (1, 2, 3). The local model
had great success on classifying this data, with an overall accuracy of 95% on the testing data.
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19 Local Machine Learning Results Thursday

The Thursday dataset contains benign data as well as three types of web attacks (Brute Force, SQL injection,
XSS). The local machine learning model had major problems classifying two of the attacks. However, we
believe that this performance is primarily an issue with the dataset itself, as it is highly skewed to the
Benign. We partially mitigated this problem by using oversampling for attacks and undersampling for
Benign, and this worked for Brute Force. However, accuracy for other types of attacks are low and we believe
that this phenomenon occurred because of lacking data points beyond the mitigation capability of
oversampling, especially for XSS (Attack type 3) which has less than 150 data points. Elasticsearch did not
perform very well on it either, which indirectly proves that the dataset itself is too imbalanced.

The Modbus dataset contains benign data as well as three types of DDoS Attacks (Modbus Query Flood,
Ping Flood, TCP SYN Flood). The training is first done separately by each attack type, trained  with 30
minute attack duration for 6h, 12h, 12h dataset and then tested with 30 minute attack duration for 1 hour, 15
minute attack duration for 12h, and 12h.
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20a Local Machine Learning Results Modbus - Modbus Query Flood

20b Local Machine Learning Results Modbus - Ping Flood

20c Local Machine Learning Results Modbus - TCP SYN Flood
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20d Local Machine Learning Results Modbus -Benign as 0, DDoS Attack as 1

20e Local Machine Learning Results Modbus -Benign as 0, other attacks as 1,2,3

Figure 20a, 20b, 20c shows the high accuracy for each attack type. The local machine learning model had no
problems classifying each of the attacks with high accuracy. However, when we trained those altogether, the
lowering accuracy phenomenon was shown. When we considered all attacks as one DDoS attack, its
performance was fine, but when we considered each attack as separate, it resulted in low accuracy for some
types of DDoS attacks. We believe that this phenomenon is the result from the three attacks’ characteristics
being reasonably similar. This is supported by the fact that when tested with normal (0) and DDoS labels (1),
it had 92% accuracy, and even when the attacks were labeled separately, normal state’s accuracy was still
92%, meaning that it has a low false positive rate. We concluded that the local ML model can distinguish
normal and DDoS attack, but not by which type of DDoS attack.

24



3.4 COMPARISON

21 Comparison Table

The Elasticsearch machine learning outperformed the local machine learning models in both datasets. The
Wednesday dataset results only differed by a few percentage points, but the performance increase was more
noticeable for the Thursday dataset anomalies. Although both models were able to correctly identify benign
data, which makes up the vast majority of samples in that dataset, Elasticsearch did outperform the local
model on the anomalies, except for SQL injection, which elasticsearch could not identify at all. In addition
to the improved metrics, Elasticsearch provides many more results that are not available with our machine
learning implementation, such as a graph that shows anomalies over time, and the ability to filter results.
This means that an actual client would greatly prefer Elasticsearch over our own methods, because the
dashboard in Elasticsearch can give them the information they need to understand and possibly prevent
these anomalies from occuring in the future. However, Elasticsearch does not currently have native support
for parsing Modbus data. In our client’s system, Elasticsearch’s utility is diminished because its features are
determined solely by its developers, who may have different priorities. A local machine learning setup like
ours may still have its place in situations where some features such as Modbus traffic integration, which is
underdeveloped on the Elasticsearch platform, and the ability to fully customize the models without relying
on third-party developers outweighs the performance decrease.

4 Context

4.1 RELATED LITERATURE

In the context of literature and industry products, our project is considered an anomaly-based intrusion
detection system (AIDS). Definitions for terms like AIDS, as well as other information for this section, are
drawn from the research of Khraisat et al. An intrusion detection system seeks to identify cyber-attacks, and
some, like our own, do so through the concept of an anomaly, or an outlier piece of data. On the other hand,
a signature-based intrusion detection system (SIDS) detects cyber-attacks by maintaining a database of
known attacks, and checking the signatures of new data against the known attacks. The primary advantage
of using an AIDS is that it is capable of detecting new types of intrusions that have not been seen before.
However, this often means that unexpected non-anomalous data may be detected as an attack. This event is
called a false positive, and mitigating them is a primary focus of AIDS.
There are three main methods of detecting attacks in AIDS. First, there are statistics-based techniques,
which build a distribution model for normal behavior. Then, new packets are assigned a probability based
on the model. Low probability packets are considered anomalous. Next, knowledge-based techniques use a
model of normal behavior that is manually built by humans. Then, data that differs from the model is
marked as anomalous. If built correctly, the knowledge base will prevent false positives because all normal

25



behavior can be recognized. However, it is very difficult in practice to build and maintain such a knowledge
base. Finally, machine learning techniques apply various rules that attempt to recognize patterns in data,
resulting in new data being assigned a score that predicts whether it is anomalous.

Our system uses machine learning techniques. Specifically, it uses decision tree and random forest
algorithms. Decision trees develop a series of branches, which classify samples based on certain feature
values. Random forests consist of a series of decision trees. They are both supervised machine learning
algorithms, which means that they are trained with datasets that contain labels that define whether each
sample is anomalous. Unsupervised machine learning techniques exist that do not have such labels, and
instead detect more general patterns and data and assign anomalies based on which data do not fit into the
patterns. In addition, other supervised learning techniques are used in AIDS, such as nearest neighbor and
support vector machines. Nearest neighbor techniques assign an anomaly score to data based on the nature
of data points with similar values. Support vector machines draw a hyperplane between data points, and
classify anomalies based on which side of the plane they are on. Out of the many options, the decision tree
was chosen as the ideal algorithm because it fits well with our dataset, which contains a large number of
samples with many features. Decision tree is efficient and relatively simple, and can handle our dataset well.
With this information, our system’s place in the wide array of intrusion detection systems should be clear.

4.2 RELATED PROCEDURES

The field of cybersecurity contains many products that serve as an intrusion detection system. One that is
similar to our design is Sqrrl, which develops software that allows its clients to detect and respond to data
breaches, among many other types of cyber-attacks. It uses many advanced technologies, including machine
learning. However, there are many differences between what we have developed compared to products like
Sqrrl. Sqrrl is designed to be applied generally to any company with cybersecurity concerns, and therefore
must be designed to reply to any kind of conceivable attack. On the other hand, our project is very
specifically targeted towards examining network packets received by our virtual machines, and we only
focus on a few types of attack. Although our project is similar in concept to the designs of many real-world
companies, they often must design their software to be much more broadly applicable, while our project is
specifically tailored to one system.
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5 Closing Material

5.1 CONCLUSION

In conclusion, we would say that we succeeded in satisfying functional requirements. We have been able to
showcase how we use our trained machine learning model to classify Modbus attacks as well as various
DDoS and Web attacks. We also have been able to create a full system on the cloud using Elasticsearch and
locally using our own machine learning model. We have Elastic set up to be able to ingest, monitor, classify,
and graph all the anomalies with their data algorithm visualizer and anomaly detection visualizer on
Kibana. One of the biggest turning points for us was that Elastic did not have means for ingesting Modbus
data. So, we have been able to replay and edit constant live network traffic using various tools such as
tcpreplay, tcpdump, and tshark. While having successfully ingested network information into Elastic, we
have been able to detect high counts of network events with DDoS attacks in Wednesday dataset. We also
have been able to detect the high counts of the brute force attacks from the Thursday dataset as well as the
hidden processes of XSS web attacks by detecting rare processes. Although we were not able to ingest live
Modbus data with Elastic, we have been able to classify Modbus attacks with Elastic’s machine learning data
analytics module. On top of this, we created our own local machine learning model and enabled live
anomaly detection for Modbus. We have tested the model multiple times by splitting the original data into a
train and test set or using the new  dataset. Based on the results compared to Elasticsearch, we could say
that our local machine learning worked. Our trained machine learning models all have an accuracy of 95
percentage or higher from our various testing except one. Overall, our implementation of the ADSICS
environment locally and on the Elastic cloud is expected to have the ability to monitor power grids from
Modbus attacks and different kinds of IT attacks.
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6 Appendix I - Operation Manual

6.1 HOW TO OPERATE LOCAL MACHINE LEARNING ANOMALY DETECTION SYSTEM

1. Operate CICFlowMeter
a. Start up the CICFlowMeter.

*CICFlowMeter is used to sniff the current network traffic and extract features from the traffic.
*You need to have WinPcap and JDK installed on your system to execute this program.

b. Inside the /CICFlowMeter-4.0/bin execute CICFlowMeter.bat to execute related jar files.

22a Operational Manual - CICFlowMeter
c. Choose “Realtime” to go into the real time sniffing mode.

22b Operational Manual - CICFlowMeter
d. List of your device’s network interface will show up, choose your intended interface and

then click start to start sniffing.
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22c Operational Manual - CICFlowMeter
e. The extracted features will show up in the form of a csv file in the /bin/data/daily folder

with corresponding date.

22d Operational Manual - CICFlowMeter
*Following is the list of features and their description.
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23 Operational Manual - List of Extracted Features
2. After you get CICFlowMeter running, now you can run the python script import.py to run the code

and get the result from the trained machine learning model whether this traffic is anomalous or
not.

6.2 HOW TO OPERATE ELASTICSEARCH ANOMALY DETECTION SYSTEM

Elasticsearch is already monitoring the virtual machine testbed network.

1. When you run the attack script on the testbed, Elasticsearch will detect it as an anomaly and will
flag it by severity, red as the most severe.

24 Operational Manual - Elasticsearch Anomaly Detection Result
*In this example, sample network flow of average 2 mb/s started at 1 a.m, Elasticsearch flagged it as most
anomalous(red). The main DDoS attack was executed on 2:00 to 3:30, which is flagged red multiple times by
Elasticsearch.
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7 Appendix II - Alternative Versions

Our project’s requirements have changed multiple times since the beginning. Originally, the project was
supposed to be about anomaly correlation rather than anomaly detection. We had believed that the project
would be provided with an anomaly detection system, and that our role would be to analyze the
characteristics of the generated anomalies and design a UI to display that analysis. However, in February
after discussion with our client, we determined that it would be more appropriate based on our knowledge
and research that we would be better off building an anomaly detection system for this project instead. This
shifted our goal greatly.

During the early stages of our work with Elasticsearch, it appeared as though we would need to manually
retrieve results from Elasticsearch and display them ourselves. However, after meeting with the Elastic team,
we realized that the platform had much more robust tools than we had realized. Eventually, we were able to
automate the retrieval and analysis of data within Elasticsearch rather than access those features remotely.
Additionally, we believed that we would need to design our own custom interface to display the
Elasticsearch results. However, it later became apparent that Elasticsearch’s interface would be more than
enough for our needs, and we shifted our focus to learning more about its dashboard so that we could
customize it to benefit our project.

Our project was originally going to perform all of its analysis on Modbus data. However, Elasticsearch
turned out to not have any naitive support for Modbus data, and such functionality could only be achieved
through using third party tools to parse the data in a custom plugin. At that point in the project, we realized
that we did not have the time to design a custom plugin for Elasticsearch. After discussion with our client,
we began to use only data that Elasticsearch could recognize by default. We were still determined to
perform some analysis of Modbus data, so we implemented it locally using a decision tree model. We have
been able to test the three kinds of DDoS attacks and it succeeded in classifying which one is normal and
which one is an attack. However, it lacked the ability to discern between DDoS attacks, scored low by
accuracy.
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8 Appendix III - Other Considerations
Most of the team entered this project with little to no knowledge about Elasticsearch, anomaly detection, or
machine learning. Nearly all of the technical knowledge needed for this project involved advanced computer
science topics or specific tools, meaning that our group spent a great deal of time researching and learning
during the year.

Initially, the Thursday dataset appeared useful because it was relatively small and had diverse and
interesting anomalies. However, after testing the data we realized that it had very poor performance
compared to other datasets like Wednesday because of its skewed state. Since we had spent so much time
working with the Thursday dataset, we still decided to include it in this paper despite the issues.

CICFlowMeter, our essential part of sniffing live network traffic and converting it to CSV file so that we can
analyze the flow and determine whether it is anomaly or not, was very hard to work with. Because it was
developed more than four years ago, and has not been compatibility tested with different operating systems,
enabling it to work took a long time. Fortunately, it was pointed out by our advisor that it should run on the
Windows 7 system because the access to some of the network functions are blocked in later Windows
versions.

Modbus dataset itself came with a PCAP file, and there was no resulting “Label” to test with. The only
information we had on the attack was the duration of attack and hours for the whole network traffic. As a
result of diligent searching, we figured out the IP address of the attacker and IP address of the victim,
eventually enabling us to label the status correctly to benign or attack.

When we first started to test the network packet capture integration with tcpreplay. We kept getting an
error packet sent because the DDoS attack message was way too big to send over our network interfaces
MTU. We changed ours from the normal rate  1200 to 9000 and we still get issues. When we added in
mtu-trunc to our extension and changed tcpreplay to tcpreplay-edit, we were able to truncate all packets
down to a normal size and still have everything run at how the network would have operated in real time. In
the process of doing so I messed with the ‘-t’ command and it accelerated the time way too much and it
finished the network run in one hour instead of eight hours.

Elastic has a lot of incredible features to mess with for system analysis, machine learning, and data
manipulation. There is one thing that isn’t included in the ELK stack, and that is the OT protocols for their
integrations. We have spoken to the Elastic team and they have stated that there is no support for OT
protocols just yet. Since we were not able to do live data traffic with modbus we went with DDoS attack,
brute force, and XSS attacks instead to show we can detect anomalies in live network traffic similar to how it
would be with OT traffic. We were also able to classify modbus attacks just like the local machine learning
model to get results and they were classified with an accuracy of 99%.

A tool that is integrated with Wireshark, editcap is an amazing way to change pcap files to your liking. At
first it was hard for us to figure out how to change the start and end times of the massive 13 gig pcap file to
the 20 min attack window so we don’t need to replay the full 2 hours of the attack range and create our own
network attacks for testing. One issue we had was that it didn’t understand the “DD-MM-YYYYTHH:MM:SS
'', the T is supposed to split the date and the time so instead we just removed it and we were able to get the

correct pcap file we wanted.
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